JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME SET & RELATIONS

(PRACTICE SHEET)

SET & RELATIONS

LEVEL- 1

Question based on	Sets	
Q.1	Which of the following (A) a collection of we (B) a collection of ob (C) a collection of we distinct and distinguis (D) All of the above	g statements is true for sets - ll defined objects jects Il defined objects which are hable
Q.2	The set $\{x : x \in N, x \in A\}$ (A) $\{4\}$ (C) Void	is prime and 3 < x < 5} is- (B) {3, 5} (D) Non – Void
Q.3	A = $\{a, e, i, o, u\}$ as statement is- (A) A \subset B (C) A = B	nd B = $\{i, o\}$ then the true (B) B \subset A (D) A is equivalent B
Q.4	A set is defined as A 0.1 < x < 0.101} then (A) A is null set (C) A is infinite set	A = {x : x is irrational and : (B) A is finite set (D) none
Q.5	Which of the followin (A) ϕ (C) {2, 3}	g is a singleton Set - (B) { } (D) { \$
Q.6	If $A = \{\phi, \{\phi\}\}$, then t (A) A (C) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$	 the power set of A is - (B) {φ, {φ}, A} (D) none of these
Q.7	If $A = \{x x^2 = 4\}$ and $A \cup B$ (A) {2, 3} (C) {2, -3}	B = {x $x^2 - 5x + 6 = 0$ } then (B) {-2, 3} (D) {-2, 2, 3}
Q.8	Given the sets A = C = {4, 5, 6}, then A ((A) {3} (C) {1, 2, 4, 5}	$= \{1, 2, 3\}, B = \{3, 4\},\$ $\cup (B \cap C) \text{ is -}$ (B) $\{1, 2, 3, 4\}$ (D) $\{1, 2, 3, 4, 5, 6\}$
Q.9	$ \begin{array}{l} \mbox{If $N_a = \{a \ n : n \in N\}$,} \\ (A) \ N_6 & (B) \ N_8 \end{array} $	then $N_6 \cap N_8 =$ (C) N_{24} (D) N_{44}
Q.10	Which of the followin (A) $\{x : x \in R \text{ and } x^2 \in R \text$	g is the empty set ? + $x + 1 = 0$ } - $x + 1 = 0$ } + $2x + 1 \le 0$ } - $2x + 1 \ge 0$ }
Q.11	Two finite sets h respectively. The tota	ave m and n elements I number of subsets of first

set is 56 more than the total number of subsets of

the second set. The values of m and n respectively

are -

(A) 7, 6	(B) 6, 3
(C) 5, 1	(D) 8, 7

- Q.12 If $A = \{x \mid x/2 \in Z, 0 \le x \le 10\},\ B = \{x \mid x \text{ is one digit prime}\}\ C = \{x \mid x/3 \in N, x \le 12\},\ Then A \cap (B \cup C) \text{ is equal to-}\\(A) \{2, 6\} (B) \{3, 6, 12\}\ (C) \{2, 6, 12\} (D) \{6, 8\}$
- Q.14 Among 1000 families of a city, 40% read newspaper A, 20% read newspaper B, 10% read newspaper C, 5% read both A and B, 3% read both B and C, 4% read A and C and 2% read all three newspapers. The number of families which read only newspaper A is-(A) 140 (B) 290 (C) 330 (D) 340
- Q.15 If for three disjoint sets A, B, C; n(A) = 10, n(B) = 6 and n(C) = 5, then $n(A \cup B \cup C)$ is equal to-(A) 21 (B) 11 (C) 1 (D) 9
- Q.16 If A and B are disjoint, then $n (A \cup B)$ is equal to-
 - $\begin{array}{ll} (A) n (A) & (B) n (B) \\ (C) n (A) + n (B) & (D) n (A).n (B) \end{array}$
- Q.18 Let n (U) = 700, n(A) = 200, n(B) = 300 and n(A \cap B) = 100, then n(A^c \cap B^c) is -(A) 400 (B) 600 (C) 300 (D) 200
- $\begin{array}{ll} \textbf{Q.19} & \mbox{The set} (A \cap B^c)^c \cup (B \cap C) \mbox{ is equal to } \\ & (A) \ A \cup B \cup C & (B) \ A^c \cup B \\ & (C) \ A^c \cup B^c & (D) \ \mbox{none} \end{array}$
- Q.20 Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$? (A) 3 (B) 6 (C) 9 (D) 18
- Q.21 In a class of 100 students, 55 students have passed in Mathematics and 67 students have passed in Physics, no student fails. Then the number of students who have passed in Physics only is(A) 22 (B) 33 (C) 10 (D) 45

- Q.22 Let X = {1, 2, 3, 4, 5, 6} be a universal set. Sets A, B, C in the universal set X be defined by A = {1, 2, 3}, B = {2, 4, 5} & C = {3, 4, 5, 6}. Then-(A) A - B = {4, 5} (B) (A - B) \cup (B - A) = {1, 3, 4, 5} (C) (A - B) - C = {1} (D) A \cap C' = {1, 2}
- Q.24 If A, B and C are any three sets, then $A \times (B \cap C)$ is -(A) $(A \times B) \cup (A \times C)$ (B) $(A \times B) \cap (A \times C)$ (C) $(A \cup B) \times (A \cup C)$ (D) $(A \cap B) \times (A \cap C)$
- Q.25 Let $A = \{a, b, c, d\}$, $B = \{b, c, d, e\}$. Then $n [(A \times B) \cap (B \times A)]$ is equal to -(A) 3 (B) 6 (C) 9 (D) none

Question based on Relation

- Q.26 In the set $A = \{1, 2, 3, 4, 5\}$, a relation R is defined by $R = \{(x, y) \mid x, y \in A \text{ and } x < y\}$. Then R is -(A) Reflexive (B) Symmetric (C) Transitive (D) None of these
- Q.27 Let R be a relation on the set N of natural numbers defined by nRm ⇔ n is a factor of m (i.e. n | m). Then R is (A) Reflexive and symmetric
 - (B) Transitive and symmetric
 - (C) Equivalence
 - (D) Reflexive, transitive but not symmetric
- **Q.28** If R is a relation from a finite set A having m elements to a finite set B having n elements, then the number of relations from A to B is-

(A) 2 ^{mn}	(B) 2 ^{mn} – 1
(C) 2mn	(D) m ⁿ

- **Q.29** Let L denote the set of all straight lines in a plane. Let a relation R be defined by $\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then R is -
 - (A) Reflexive
 - (B) Symmetric
 - (C) Transitive
 - (D) None of these

- Q.30 Two points A and B in a plane are related if OA = OB, where O is a fixed point. This relation is -
 - (A) Reflexive but not symmetric
 - (B) Symmetric but not transitive
 - (C) An equivalence relation
 - (D) None of these
- Q.31 The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} on the set A = {1, 2, 3} is (A) Reflexive but not symmetric
 (B) Reflexive but not transitive
 (C) Symmetric and transitive
 (D) Neither symmetric nor transitive
- Q.32 Let $A = \{2, 3, 4, 5\}$ and let $R = \{(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 5), (5, 3)\}$ be a relation on A. Then R is -(A) Reflexive and transitive (B) Reflexive and symmetric (C) An equivalence relation (D) None of these
- Q.33Let L be the set of all straight lines in the
xy-plane. Two lines ℓ_1 and ℓ_2 are said to be
related by the relation R if ℓ_1 is parallel to ℓ_2 .
Then the relation R is -
(A) Reflexive (B) Symmetric
(C) Transitive (D) Equivalence
- Q.34 Given the relation $R = \{(2, 3), (3, 4)\}$ on the set {2, 3, 4}. The number of minimum number of ordered pairs to be added to R so that R is reflexive and symmetric – (A) 4 (B) 5 (C) 7 (D) 6
- Q.35The minimum number of elements that must be
added to the relation $R = \{(1, 2), (2, 3)\}$ on the set
 $\{1, 2, 3\}$, so that it is equivalence is-
(A) 4
(B) 7
(C) 6
(D) 5Q.36Let a relation 'R' is define on 'Z' set of integers
such that a R b \Rightarrow a is divisible by b then 'R' is-
(A) Reflexive
(B) Symmetric
(C) Transitive
- **Q.37** Let $R : \Delta \to \Delta$, where Δ is set of all triangles such that $\Delta_1 R \Delta_2 \Rightarrow \Delta_1$ is congruent to Δ_2 then 'R' is-(A) Reflexive (B) Symmetric (C) Transitive (D) Equivalence relation

LEVEL- 2

	SECTIO	DN –A
Q.1	Let $A = \{1, 2, 3, 4\},\$ (4, 4), (1, 2)} be a relation (A) Reflexive	and let R = {(2, 2), (3, 3), tion on A. Then R is- (B) Symmetric
	(C) Transitive	(D) None of these
Q.2	The void relation on a (A) Reflexive (B) Symmetric and tra (C) Reflexive and sym (D) Reflexive and tran	set A is- nsitive nmetric nsitive
Q.3	For real numbers x and	d y, we write
	$xRy \Leftrightarrow x - y + \sqrt{2}$ is the relation R is - (A) Reflexive (C) Transitive	an irrational number. Then(B) Symmetric(D) None of these
Q.4	Let X = {1, 2, 3, 4, 4 Which of the follow X to Y- (A) $R_1 = \{(x, y) y = 2\}$ (B) $R_2 = \{(1, 1), (2, 1)\}$	5} and $Y = \{1, 3, 5, 7, 9\}$. wing is/are relations from $2 + x, x \in X, y \in Y\}$ $(3, 3), (4, 3), (5, 5)\}$
0.5	(C) $R_3 = \{(1, 3), (2, 5)\}$ (D) $R_4 = \{(1, 3), (2, 5)\}$	(3, 5), (3, 7), (5, 7) (2, 4), (7, 9)
Q	numbers by aRb ⇔ 1 (A) Equivalence relati (B) Transitive (C) Symmetric (D) Anti-symmetric	+ ab > 0. Then R is- on
Q.6	Which one of the for equivalence relation- (A) $xR_1y \Leftrightarrow x = y $ (C) $xR_1y \Leftrightarrow x y$	blowing relations on R is (B) $xR_2y \Leftrightarrow x \ge y$ (D) $xR_2y \Leftrightarrow x \le y$
Q.7	Let R be a relation in I $R = \{(1+x, 1+x^2): x \in X \}$ Which of the followin (A) $R = \{(2, 2), (3, 5), (3, $	N defined by $\leq 5, x \in N$. g is false - (4, 10), (5, 17), (6, 25)} , 3, 4, 5, 6} 5, 10, 17, 26}
	(D) None of these	

Q.8	The relation R defined in A = $\{1, 2, 3\}$ by aRb if $ a^2 - b^2 \le 5$. Which of the following is false (A) R = $\{(1, 1), (2, 2), (3, 3), (2, 1), (1, 2), (2, 3), (3, 2)\}$ (B) R ⁻¹ = R (C) Domain of R = $\{1, 2, 3\}$ (D) Range of R = $\{5\}$
Q.9	The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} on the set A = {1, 2, 3} is - (A) Reflexive but not symmetric (B) Reflexive but not transitive (C) Symmetric and transitive (D) Neither symmetric nor transitive
Q.10	Let a relation R in the set N of natural numbers be defined as $(x, y) \in R$ if and only if $x^2 - 4xy + 3y^2 = 0$ for all x, $y \in N$. The relation R is -

(A) Reflexive(B) Symmetric(C) Transitive(D) An equivalence relation

- Q.11 Let A = {2, 3, 4, 5} and let R = {(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 5), (5, 3)} be a relation in A. Then R is -(A) Reflexive and transitive (B) Reflexive and symmetric (C) Reflexive and antisymmetric (D) None of these
- Q.12 If $A = \{2, 3\}$ and $B = \{1, 2\}$, then $A \times B =$ (A) $\{(2, 1), (2, 2), (3, 1), (3, 2)\}$ (B) $\{(1, 2), (1, 3), (2, 2), (2, 3)\}$ (C) $\{(2, 1), (3, 2)\}$ (D) $\{(1, 2), (2, 3)\}$

Q.13 Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d), then R is(A) Symmetric only
(B) Reflexive only

- (C) Transitive only
- (D) An equivalence relation

Q.14 If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is (A) {1, 4, 6, 9}
(B) {4, 6, 9}

- Q.15 Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation R is [AIEEE-2004] (A) transitive (B) not symmetric (C) reflexive (D) a function
- Q.16 Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$, be relation on the set $A = \{3, 6, 9, 12\}$. The relation is -

[AIEEE-2005]

- (A) reflexive and transitive only
- (B) reflexive only
- (C) an equivalence relation
- (D) reflexive and symmetric only
- Q.17 Let W denote the words in the English dictionary. Define the relation Rby : R = {(x, y) ∈ W × W | the words x and y have at least one letter in common}. Then R is [AIEEE 2006]
 (A) reflexive, symmetric and not transitive
 (B) reflexive, symmetric and transitive
 (C) reflexive, not symmetric and transitive
 - (D) not reflexive, symmetric and transitive
- Q.18 Let R be the real line. Consider the following subsets of the plane $R \times R$: $S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$
 - $T = \{(x, y) : x y \text{ is an integer}\}.$

Which one of the following is true ?

[AIEEE 2008]

- (A) Both S and T are equivalence relations on R(B) S is an equivalence relation on R but T is not(C) T is an equivalence relation on R but S is not(D) Neither S nor T is an equivalence relation on R
- Q.19 If A, B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then -[AIEEE 2009] (A) A = B (B) A = C(C) B = C (D) $A \cap B = \phi$

Q.20 Let R be the set of real numbers. Statement-1:

 $A = \{(x, y) \in R \times R : y - x \text{ is an int eger}\} \text{ is an}$ equivalence relation on R.

Statement-2:

 $B = \{(x, y) \in R \times R : x = \alpha y \text{ for some rational number } \alpha \}$ is an equivalence relation on R. [AIEEE 2011] (A) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

(B) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

(C) Statement-1 is true, Statement-2 is false.

- (D) Statement-1 is false, Statement-2 is true.
- Q.21 Let $P = \{\theta : \sin \theta \cos \theta = \sqrt{2} \cos \theta\}$ and $Q = \{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\}$ be two sets. Then [IIT 2011] (A) $P \subset Q$ and $Q - P \neq \emptyset$ (B) $Q \not\subset P$ (C) $P \not\subset Q$ (D) P = Q

ANSWER KEY

LEVEL- 1

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	С	В	С	D	С	D	В	С	A,B	В	Α	В	С	А	С	С	С	В	В
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
Ans.	D	B,C,D	Α	В	С	С	D	А	В	С	А	В	D	В	В	С	D	С		

LEVEL- 2

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	В	А	A,B,C	С	Α	Α	D	Α	Α	В	А	D	С	В	Α	Α	С	С	С

21.[D] P :
$$\sin\theta - \cos\theta = \sqrt{2} \cos\theta$$

$$\sin\theta = (\sqrt{2} + 1) \cos\theta$$
$$\tan\theta = \sqrt{2} + 1$$
$$\tan\theta = \tan 67 \frac{1}{2}^{\circ}$$
$$\theta = n\pi + \frac{3\pi}{8}, n \in I$$
$$Q: \sin\theta + \cos\theta = \sqrt{2} \sin\theta$$
$$\cos\theta = (\sqrt{2} - 1) \sin\theta$$
$$\tan\theta = \sqrt{2} + 1$$
$$\theta = n\pi + \frac{3\pi}{8}, n \in I$$
$$\therefore P = Q$$